<img height="1" width="1" style="display:none" src="https://www.facebook.com/tr?id=220807558931713&amp;ev=PageView&amp;noscript=1">

マーケティングで使えるデータ分析の手法8選!

 2020.09.07  電算システムブログ編集部

マーケティングにおいて、データ分析はとても重要な存在です。データ分析により、これまで人の目で分析・把握していた情報よりも、より有益な情報が得られます。この有益な情報をマーケティングに反映すれば、新しいアプローチ方法や課題の改善方法を見つけることができるでしょう。しかし、データ分析にはさまざまな方法があります。多くの方法から、企業の特徴やデータ分析の目的に応じた方法を選ばなければなりません。

今回はマーケティングで使えるデータ分析の手法をご紹介します。

現代のマーケティングでのデータ分析の重要性

現代ビジネスでは、マーケティングにデータ活用をする需要が高まりつつあります。企業内外で蓄積される膨大な量のデータ群を指す「ビッグデータ」というデータを用いたマーケティングを行う企業も多く、企業の業績拡大に大きな影響をもたらすものとして積極的に取り入れられています。ビッグデータは経営戦略やマーケティングに有益なデータです。ビッグデータをリアルタイムに分析・活用することで、顧客の需要を捉えた新しいアプローチと企業が抱える課題を改善できるでしょう。

しかし、膨大なデータ量をただ抱えるだけでは、有効活用しているとはいえません。ビッグデータは自動的にマーケティングに反映されるものではないため、自らきちんとデータを分析し、得られる結果をどうマーケティングに反映していくかが重要となります。

また、データ分析の方法には種類も多く、それぞれ用途や分析結果の違いをしっかり知っておかなければ、分析結果をマーケティングで効果的に活用できないため、データ分析に関する知識も必要です。

データ分析で代表的な8種類の分析方法の特徴について紹介!

データ分析では、目的や用途に合わせて分析方法を使い分けることが必要です。マーケティングで使用できるデータ分析方法の中でも基本とされる8つの分析方法とその特徴についてご紹介します。

1. クロス集計分析

クロス集計分析とは、複数の特定項目における相互関係を分析・集計する方法で、主にアンケート集計などで活用されています。

収集したデータを年齢、性別、地域、職業などのさまざまな属性に分けて集計します。同時に複数軸からデータを収集でき、属性ごとの大まかなトレンド性を発見することも可能です。

小売業などでは、クロス集計分析から顧客のニーズを把握し、販売予測や仕入れ数の調整に活用しているところもあります。

また、調査目的に合わせて属性に一定の設定を設けることで、よりピンポイントなデータを収集することができるなど、対象に合わせてさまざまなデータの取得もできます。

Lookerで実現する全社データ・ドリブン化
初めてのLooker

最も基本的なデータ分析方法といわれており、Excel内に標準搭載されている機能で分析ができるなど、初心者にも扱いやすい分析方法といわれています。

2. アソシエーション分析

アソシエーション分析とは、一見関連性のないデータ同士を分析することで、類似性を発見し、隠れた関係性を分析する方法です。一般的にネット通販や、スーパー、小売業者などでよく使用されており、同時購入の比率が高い商品に隠れる関係性を把握することで、店頭販売のアプローチや広告の打ち出し方といったマーケティング方法を効果的なものへ変えることができます。

アソシエーション分析の中でも有名な事例なのが、おむつとビールの同時購入に関する事例です。とあるスーパーでは、おむつとビールが同時購入されているというデータに注目したところ、父親がおむつを購入するついでにビールを同時に購入しているという分析結果が判明しました。このデータをもとに、陳列棚におむつとビールを並べたところ、双方の売り上げが向上しました。このように、人の認識では見落とされがちなデータを収集・分析できるのが、アソシエーション分析の特徴です。

3. バスケット分析

バスケット分析とは、アソシエーション分析から派生した分析方法のことです。構造としてはアソシエーション分析と変わりませんが、アソシエーション分析は「2種類のデータ同士を分析する」という広範囲なデータを対象とする一方、バスケット分析では顧客の購入商品が分析対象となります。例えば通販サイトの場合だと、顧客が買い物かごに入れた商品のデータを企業側が把握することで、同時購入される商品の特定や確率をはじき出し、分析結果をマーケティングに反映していきます。

バスケット分析を活用した事例としては、通販サイトによく表示される「この商品を購入した人は、こちらの商品も購入しています」といったレコメンドです。これはバスケット分析の方法で、顧客同士のデータを組み合わせて分析を行った結果から導き出されたもので、従来のレコメンドシステムよりも、より顧客の需要に合わせたレコメンドを提供することが可能です。

4. ロジスティック回帰分析

ロジスティック回帰分析とは、発生確率を予測する分析方法で、結果は0から1の間の数値で表されます。1つの事象に対し「はい」または「いいえ」の答えで集計することで、事象の発生確率を予測、または結果に対する要因を把握することができます。例えば、顧客の購入データにおいてロジスティック回帰分析を使用する場合、「顧客はこの商品と同時にどのような商品を購入しているか」など同時購入されている商品を分析するのではなく、「この商品は購入されたか、されていないか」のという2択から結果を導きます。分析結果から顧客の特徴を捉えることができるため、顧客へのより効果的なアプローチ方法を見つけ出すことができます。

ロジスティック回帰分析は、主に何らかの開発や研究をしている企業に適していると考えられています。医療分野では病気の発生確率の分析に活用され、治療効果の向上に役立てられています。

5. 因子分析

因子分析とは、複数のデータ間から共通因子を見つけ出すことで関連性を発見できる分析方法で、ビジネスに限らず、多くの研究分野でも活用されています。

因子分析では、各変数と各因子の相関を表す「因子負荷量」、データ同士の関連性を表す「共通性」・各因子の説明力を表す「寄与率」が導き出され、目に見える範囲ではわからないデータの特性を把握できます。複数のデータの中からいくつかの共通因子を発見することができれば、それぞれの相関図を作成することができ、事象の原因や企業が抱える改善点・課題をみつけやすくすることができます。

この相関図をもとにマーケティングを行えば、課題を改善しながら効率良く、効果的なマーケティングが実現でき、売り上げの向上につなげることができます。

6. ABC分析

ABC分析とは、商品の売り上げコストや在庫、顧客といった要素を重要度によってランク分けする分析方法です。

例えば商品ごとの売り上げを集計する場合、まずはすべての商品を売り上げの多い順に並べ、全体売り上げに対する各商品の売り上げ割合を算出します。そして売り上げ割合が上位の商品から累積し、累積値をもとに商品をA・B・C…とランク分けします。重要度によってランク付けできるため、商品の売り上げを可視化することができ、「売れ筋商品」や「死に筋商品」が判明するとともに、今取り組むべき課題や改善点が見つけやすくなります。

ABC分析による結果をもとにマーケティングを行えば、在庫管理や販促ができ、コストを大きく軽減することができます。また、重要度に合わせて適切な人員配置を検討すれば、人的コストの削減にもつながります。

7. クラスター分析

クラスター分析とは、異なる性質の要素を持つデータの中から共通性を持つデータごとに分類し、グループごとの属性を分析する方法です。共通性があるものとして分けられたグループのことを「クラスター」と呼びます。性別や年齢などの外的基準が定まっていないデータを分類でき、データ同士の関連性を見出すことで、潜在顧客のニーズを把握することができます。例えばA・B・Cの3つの商品があり、1,000円以上の価格であるのがA・B、全体売り上げの5%を満たすものはBとC、若い女性に人気の商品がAとCという分析結果が出たとしましょう。この場合3つの商品のそれぞれの立ち位置がわかりやすくなり、各商品に見合ったアプローチができます。消費者の立場から分類ができるため、顧客の需要を反映しやすく、主にサービスの提供や、自社で商品開発をする企業が活用しています。

8. 決定木分析

決定木分析とは、クロス集計の分析方法を繰り返し行うことで、複数の要因から見られる関係性や、もととなる要因に影響する強い根拠が発見できる分析方法です。1つの結果からさまざまな結果予測を立てていき、枝分かれするように分析を進めていくことから「決定木」と呼ばれており、他にも「ディシジョンツリー」「回帰木」「分類木」とも呼ばれています。

決定木分析では、クロス集計よりさまざまな原因を探ることができ、顧客の購買意欲や意思決定などを分析することができるため、商品開発やサービスを提供する企業によく利用されています。

また、「もし~だったら」という仮定をもとに分析するため、あらゆる可能性を細かく見つけ出すことができるため、リスクマネジメント分野で活用されるケースも多いです。

[RELATED_POSTS]

まとめ

マーケティングにデータ活用するには、適切なデータ分析を行うことが求められます。しかし、企業によっては専門的な知識を持つ社員がいないため、データ分析の担当者を確保できないケースもあるでしょう。

株式会社電算システムでは、プロのデータサイエンティストとデータエンジニアが、企業に必要なデータ分析を活用し、お客様のビジネス課題の解決に努めます。データ分析を活用したマーケティングをご検討されている方は、ぜひ一度ご相談ください。

初めてのLooker

RELATED POST関連記事


RECENT POST「Looker」の最新記事


マーケティングで使えるデータ分析の手法8選!
よくわかるGSuite無料セミナー